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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

The behaviour of materials under combined steady 
and oscillatory shear 

T. E. R. JONES and K. WALTERS 
Department of Applied Mathematics, University College of Wales, 
Aberystwyth, Wales 
MS. yeceized 13th July 1970 

Abstract. We consider the behaviour of elastico-viscous liquids as they 
deform under the action of an unsteady shear field consisting of a small- 
amplitude oscillatory shear superimposed on a steady simple shear. The 
theory for such a situation is developed in detail and certain predictions, some 
quantitative, and some qualitative, are made. These predictions are shown to 
be in good agreement with experimental results obtained from a rveissenberg 
rheogoniometer for certain aqueous polymer solutions. 

1. Introduction 
There is a growing interest in the flow behaviour of non-Xewtonian liquids as 

they deform under the action of a combined steady and oscillatory shear (see, for 
example, Osaki et al., 1965, Booij 1966 a,b, Macdonald and Bird 1966, Tanner 1968, 
Pipkin 1968). Although some attention has been paid to the case when the oscillatory 
shear is orthogonal to the steady shear (Tanner and Simmons 1967), most interest has 
been centred on the situation in which both the steady and the unsteady shear are in 
the same direction. For this second situation, any theoretical predictions can be 
immediately examined experimentally on a Weissenberg rheogoniometer, since this 
instrument has facilities for subjecting a material to a combined steady and oscillatory 
shear of the required sort. 

Previous investigators have concentrated on the effect of the superimposed steady 
shear on the oscillatory motion. I n  particular, they have been concerned with the 
effect of the steady shear on the dynamic viscosity 7' and dynamic rigidity G' 
measured as functions of the frequency of oscillation. We shall give some considera- 
tion to this aspect of the problem, but our primary concern will be the effect of the 
oscillatory shear on the mean motion. We mill be concerned exclusively with the shear 
stress CT and no consideration will be given to the normal stresses. 

In  3 2 me develop the theory for superimposed flow in the cone-and-plate geo- 
metry. Certain predictions are made, some quantitative some qualitative, and these 
are checked experimentally in 4 3.  

2. Theory 
We refer all physical quantities to spherical polar coordinates ( T ,  8, x), the cone and 

plate being given by 8 = /3 and 8 = n/2, respectively. The  axis of rotation is taken 
as the polar axis and the appropriate velocity distribution is then (0, 0, r sin Ow(8, t)) ,  
where Y sin Ow is the physical component of the velocity in the x direction. We have 
tacitly assumed that the gap between the cone and the plate is small and that inertial 
effects can be ignored, so that secondary flows are not relevant (cf. Oldroyd 1958, 
Walters 1962, 1968, Walters and Waters 1968). 
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The shear rate y is given by 

If the plate is given a forced motion consisting of a steady and an oscillatory part, 
and the cone is constrained by a torsion wire, the relevant form for y in the liquid is 

y = q(1+ EF(O) exp( iwt)) 
where 

UW 
E = -8 

4 
(3) 

In  (2), F is a non-dimensional complex function of 0 and the real part is implied. 
In  (3), U is the angular amplitude and w is the frequency of oscillation of the plate. 
We shall assume that E is sufficiently small for terms of order e3 to be ignored. 

For a small gap between the cone and the plate, the steady shear q is given by the 
constant value (cf. Walters and Waters 1968, Walters 1968) 

where i2 is the (steady) angular velocity of the plate. Further, the function F is 
given by (cf. Walters and Kemp 1968) 

i{exp(ic) - 9) 
F =  

(7i'/2 - P )  
where 4% is the angular amplitude of the motion of the cone and c is the phase lag 
of the cone behind the plate. It is easily verified that (4) and (5) satisfy the equations 
of motion for any proposed equations of state. 

We next need to consider suitable equations of state relating appropriate stress 
and deformation variables. For the deformation variable, we take (cf. Oldroyd 1950) 

wheregik is the metric tensor of a coordinate system xi and x f i  is the position at time 
t' of the element that is instantaneously at the point xi at time t. 

If we write the displacement functions x f z  as Y' ,  e', xi ,  it is easily verified that, for 
the velocity distribution under consideration, 

Y '  = Y 

8' = e 

x' = x- 
From (6) and (7), the physical components of Gik can be shown to be 

~(6, T )  dT. 1:. 
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where 

i 0 ) (9) 
E 

D = Re q(t - t’) - i - qF exp(iwt)[l - exp( - iw(t - t’)}] . 

We shall be concerned only with the shear stress U, which, on account of (8), 
can be written in the form (cf. Pipkin 1966) 

u(t) = Ft_ , {D(t  - t’)} (10) 

where F is a functional. We note from (8) and (9) that, provided E is sufficiently 
small, the deformation is equivalent to a slight perturbation of a state of steady 
shear flow. The  work of Pipkin (1966) implies, therefore, that (10) can be written in 
the simplified form 

U =  U,+ f-, 4;&, t-t’)AD(t-t’)dt’ 

p2(q, t - t’ ,  t - t”)hD(t - t’)hD(t - t”) dt‘ dt“ (11) 
+ i;, jl, 

where 

AD = - i qF exp(iwt)[l- exp{ - io( t  - t’))] (12) 
w 

and terms of order e3 have been ignored. In  equation (ll),  uo is the unperturbed 
shear stress given by 

0 0  = 4 4 4 )  (13) 
~ ( q )  being the shear-dependent apparent viscosity. y, and y2 satisfy the consistency 
relations (cf. Pipkin 1966) 

Substituting (12) into (11) and making use of the result 

Re(f1) Rev21 = HRe(f1fd + Re(f1J2)) (16) 
wheref, and fz  are complex functions and the bar denotes the complex conjugate, 
we obtain 

€4 
U = uo - i - F exp( iwt) yl(q, t){l- exp( - iwt)} d t  

w 
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In  the case of a small gap angle and negligible fluid inertia, the relevant stress 
equation of motion is 

do  
- = 0. 
de 

It is easily verified that (17) with (4) and (5) satisfy this equation. 

steady shear, it is customary to write (cf. Walters 1968) 
In  the case of a small-amplitude oscillatory motion without any superimposed 

U = f ' y  

which from (2) becomes essentially 

U = q*EqFexp(iwt). (20) 
7" is called the complex viscosity and is usually written in the form 

iG 
7?* = ??'- w- 

where q f  is called the dynamic viscosity and G' the dynamic rigidity. We see from 
(17) that, in the case of superimposed steady shear, it is possible to define an effective 
complex viscosity given by 

Fl(4, t){1 -exp(- ;we)) d t .  (22) 7?*=-i  0 

In  the limiting case as w + 0, (22) reduces t o  

which implies that 

and 

This result was obtained by a different method in our previous work (Walters and 
Jones 1968) and was also derived at about the same time by Markovitz (1968) and 
Pipkin (1968). 

Our primary concern in the present paper is the effect of the oscillation on the 
mean shear stress and the mean couple. From (17), we see that to order E ~ ,  the mean 
shear stress is given by 

where terms of order c4 have been ignored. From (25), it is easily deduced that the 
percentage decrease 1 in the mean couple on one of the instrument members is given 
by 

where terms of order e4 have been ignored. 
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If w -+ 0, with q fixed, it is easily verified that I +- 0. On the other hand, if 
w -+ 0 with E fixed, we see that 

Equations (24) and (27)  imply that in the limit of zero frequency all elastico- 
viscous liquids behave as a non-Newtonian inelastic liquid characterized only by its 
shear-dependent viscosity ~ ( q ) .  The predictions embodied in equations (24) and (27) 
will be examined experimentally in $ 3 .  

For general values of w ,  it is not possible to make quantitative predictions at 
the present time, since it is not possible to specify the functions q1 and v2. How- 
ever, qualitative predictions may be made by appealing to a simple fluid model. We 
take an Oldroyd (1958) model, since Booij (1966 a,b) has used such a model with some 
success in predicting the general shape of the dynamic viscosity and dynamic rigidity 
curves for non-zero q. 

For equations of state of the form? 

Pi, = -Pg.lk+Plk’ (28) 

it is readily verified that the corresponding form for I is obtained by writing 

x (1 +Pohlq2)21* (31) 

From (23) and (27) ,  it is seen that the unperturbed shear stress uo and its deriva- 
tives with respect to the shear rate q are likely to be important when a steady shear and 
a small-amplitude oscillatory shear are superimposed. In  figure 1 we have plotted 
typical curves of uo, duo/dq and d2uo/dq2 for the Oldroyd model (29). 

Figure 2 contains theoretical ( I ,  w )  curves for small values of q and realistic values 
of yo, A,, A, and po.  Figure 3 contains the corresponding ( I ,  q )  curves for various 
values of w .  The  predicted shape of the curves for higher values of q is demonstrated 
in figures 4 and 5 .  The values of E used in the computation were 0.0265 and 0.007. 
It will be observed that, even for these small values, quite large changes in the mean 
couple are predicted under some conditions. 

t p i k  is the stress tensor, p an arbitrary isotropic pressure, e t k ( l )  the rate of strain tensor 
and b / b t  is the convected time derivative introduced by Oldroyd (1950). 7 0 ,  h,, h ,  and PO are 
material constants. The usual tensor notation is implied. 
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U 
IO 20 

q (s-') 
Figure 1. Curves of U", duoldq, d2ao/dq2 for the Oldroyd model. v0 = 500, 

A1 = 1.0, A, = 0.6, pa = 0.01. 
I00 

IO 

1.c 
I 

0. I 

Figure2. ( I ,  w)curvesforrlo = 500, hl = 1.0, A, = 0.1,,,~~ = 0.01,c = 0.0263. 
Experimental conditions correspond to those of figure 7. 

I00 

I 

' O t  

I ,  I I 
1.0 2.0 3.0 

Q ( s-'I 
Figure 3. ( I ,  q) curves for r lo  = 500, A, = 1.0, hz = 0.1, pa = 0.01, 

E = 0.0265. Experimental conditions correspond to those of figure 7. 



The behaviour of materials under combined steady and oscillatory shear 91 

lool IO 

O W )  

Figure 4. (I, w )  curves for rl0 = 700, hl = 1.0, hz = 0.15, pLo = 0.0015, 
E = 0.007. Experimental conditions correspond to those of figure 7 .  

0 
9 ( i l l  

Figure 5 .  ( I ,  q) curves for T~ = 700, AI  = 1.0, A, = 0.15, po = 0.0015, 
E = 0.007. Experimental conditions correspond to those of figure 7 .  

3. Experimental results 
The experimental results were obtained from a Weissenberg rheogoniometer 

model R16 manufactured by Sangamo Controls Ltd. With two drive-units available, 
a superimposed steady and oscillatory shear was readily available, and existing experi- 
mental techniques for uncoupled (steady or oscillatory) shear could be easily 
adapted to study the effect of the steady shear on the dynamic properties and also 
the effect of the oscillatory shear on the mean couple. 

3.1. Effects of steady shear on the complex oiscosity 
In practice, the complex viscosity q* is determined by measuring the amplitude 

ratio J of the motions of the cone and the plate and the phase lag c between them 
(cf. equation (5)). In  the absence of fluid inertia, the equations for 7’ and G’ are 
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(Walters and Kemp 1968, Walters 1968) 

- T u 3  sin c 
$2 - 2 3  cos c + 1 
T U ~ ~ ( C O S  c - 4) 
3 2 - 2 3  cos c+  1 

r' = __ 

G' = - 

where 

(32) 

(33) 

K is the restoring constant of the torsion wire, I the moment of inertia of the cone 
about its axis, a the radius of the cone and 0, is the gap angle. Equations (32) and 
(33) were used in the present investigation to determine 7' and G' as functions of 
frequency in the case of non-zero values of q. 

A number of combined steady and oscillatory shear experiments were performed 
on various aqueous solutions of polyacrylamide.? The  uo, duo/dq and d2uo/dq2 

-40 1 25 50 

q (s-') 

Figure 6. Experimental curves of uo, duo/dq, dzuo/dqa for a 5 "/b aqueous solution 
of polyacrylamide. 

curves for a 5% solution, which are typical of those obtained in the present investiga- 
tion, are given in figure 6. I t  will be observed that the theoretical curves for the 
Oldroyd model (figure 1) show the same essential features as the experimental 
curves. 

Polyacrylamide P250 manufactured by Cyanamid of Great Britain. 
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Figures 7 and 8 contain (v’, w) and (G’, w) curves for various values of q for the 
57; solution. We see that 7’ decreases with increasing q at each frequency and that 
negative G’ values are possible at the lower frequencies. The  curves are similar to 
those given in a previous communication (Walters and Jones 1968), 

Figure 7. Experimental (q’, w) curves for a S y o  aqueous solution of poly- 
acrylamide. K = 9.034 x 10’ dyn cm, 1 = 1-64 x lo3 dyn cm s2, a = 3.765 cm, 

B o  = 1” 32’. theoretical prediction based on (24). 

w (s-‘) 
Figure 8. Experimental (G’, U )  curves for a 5% aqueous solution. 

Included in figure 7 are the doo/dq values obtained from figure 6. It will be ob- 
served that q’ + dao/dq and G’ + 0 as w + 0 in agreement with the theoreticaI 
prediction (24). 
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Figure 9 and 10 contain complex viscosity data for a 4% solution and figures 11 
and 12 the corresponding data for a 4.5% solution. The  general features are the same 
as those for the 5% solution with prediction (24) valid in each case. 

80 

W -  

16 
w (5”) 

1 

Figure 9. Experimental ( T ’ ~  w )  curves for a 476 solution of polyacrylamide. 
Experimental conditions as in figure 7 .  @ theoretical predictions based on (24). 

I -laob 15 30 
w (5-1) 

Figure IO. Experimental (G’J w )  curves for a 4% solution of polyacrylamide. 

In  his experimental study of the same problem, Booij (1966 b) noticed that 
G‘ = 0 at frequencies which were given to a good approximation by w = q/2. I n  
our earlier study (Walters and Jones 1968) we also noticed this feature. The  current 
experiments on more concentrated solutions indicate that the empirical relation given 
above is not valid universally. 



The behaviour of materials under combined steady and oscillatory shear 95 

Fig. 11. Experimental (T', w )  curves for a 4.50;& solution of polyacrylamide. 
Conditions the same as in figure 7 .  @ theoretical predictions based on (24). 

Figure 12. Experimental (G', w )  curves for a 4.50; solution of polyacrylamide. 

3.2. EfJect of oscillatory shear on the mean sheaf. 
We have indicated that combined steady and oscillatory shear experiments are 

very easily performed on the Weissenberg rheogoniometer. An investigation of the 
percentage change in the mean couple due to the oscillatory shear is particularly 
simple to carry out. The  main limitation is caused by the relatively low value of the 
maximum amplitude of the oscillatory shear. This was 0.0285 radians in our case, 
so that we were limited to very low values of E (  = ctw/q) in cases of low frequencies 
or high shear rates. The  small amplitude also means that any slight imperfection in 
the steady motion at high shear rates q can be of the same order of magnitude as the 
superimposed oscillatory shear. There is therefore a practical limitation on q. 
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Figure 13 contains curves of percentage decrease in couple I against frequency w 
for various values of p and fixed E .  It will be observed that I + 0 as w + 0 in agree- 
ment with the theoretical prediction of $2 .  We remark, in passing, that figure 11 
indicates a 30% decrease in mean couple for E = 0.2. 

w (5-1) 

Figure 13.  Experimental ( I ,  w )  curves for fixed 3: (0.0285 rad) for a 501' aqueous 
solution of polyacrylamide. 

The dependence of I on E is illustrated in figure 14 for various values of w and 
fixed q. It is clear that there is a substantial range of E for which I is proportional to 
E*,  in accordance with the theoretical result (26). At higher values of E the curves 

25 

0 1.5 
c 2 x  IO' 

Figure 14. Experimental (I, E )  curves for fixed q (2.94s-') for a 506 aqueous 
solution of polyacrylamide. 

of I against c2 depart from a straight line and here terms of order E* can no longer 
be ignored. All later experiments were performed within the region where I is 
proportional to e2, to enable a check to be made between theory and experiment. 
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Figures 15 and 16 illustrate, for a 400% aqueous solution of polyacrylamide, 
how I varies with o for various values of q and with q for various values of w .  In  
each case E = 0.0283. It is clear that the experimental curves have the same general 
shape as the theoretical curves based on the Oldroyd model (cf. figures 2 and 3). 
The  comparable work of Booij (1966 a,b) on the influence of q on q* would deter 
one from seeking a quantitatice comparison between theory and experiment for such 
a simple fluid model. 

20 40 
(3 W J  

Figure 15. ( I ,  a) curves for a 494 solution of polyacrylamide. E = 0.0283. 
@ theoretical predictions based on (27). 

I O C  

IC 

I .c 
1 

0.1 

w I 

q (5") 

Figure 16. (1, q) curves for a 4% aqueous solution of polyacrylamide. E = 0.0283, 
Broken line: theoretical prediction based on (27). 

From figures 15 and 16 it is clear that I tends to non-zero values as w tends to 
zero for fixed E ,  in contrast with the situation in figure 13 where CI was fixed in the 
limiting process. 

Included in figures 15 and 16 are the theoretical values of I based on the 
'inelastic' equation (27). It is clear that the experiments provide adequate confirma- 
tion of the theoretical predictions (27). 

SA 
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1 

0 I O  20 
w ts-') 

Figure 17. (I, o) curves for a 4.5% aqueous solution of polyacrylamide. 
E = 0.0265. ~3 theoretical prediction based on (27 ) .  

IO  - 

I 

q (s-'I 

Figure 18. (I, q) curves for a 4.5% aqueous solution of polyacrylamide. 
E = 0.0265. Broken line: theoretical prediction based on (27) .  

I 

13 26 
w c.') 

Figure 19. (I, w )  curves for a 5.0y0 aqueous solution of polyacrylamide. 
E = 0.007. @ theoretical prediction based on (27). 
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The various theoretical predictions, quantitative and qualitative, are further 
confirmed by figures 17 and 18 which contain results for a 405% aqueous solution of 
polyacrylamide. 

In  figures 19 and 20 for a 50,; solution, we have taken relatively high values of q 
to illustrate the experimental results in this range. In  this case, it is not possible to 
adequately check the inelastic prediction (27) on account of the experimental limita- 
tion on the amplitude of the oscillatory motion. 

IOC 

IC  

1.0 

I 
0.1 

. . . 
15 30 45 

q (5-1) 

Figure 20. ( I ,  q) curves for a 5.0°, aqueous solution of polyacrylamide. Broken 
line: theoretical prediction based on (27). 

4. Conclusions 
On theoretical grounds, the fact that the relation between stress and shear rate is 

nonlinear in the case of elastico-viscous liquids immediately suggests that a super- 
imposed oscillation on a steady shear should affect the mean stress. There have also 
been superficial attempts to investigate such an effect experimentally. However, we 
know of no detailed investigation, theoretical or experimental, of the sort given in 
the present paper. The  work indicates that the experimental determination of the 
mean stress in the case of superimposed steady and oscillatory shear, which is very 
easy to perform in practice, would be a useful addition to the experiments which are 
already available for elastico-viscous model fitting. 

As an important indirect conclusion of the present work, we remark that in steady 
shear experiments involving elastico-viscous liquids, the fact that any variation from 
a state of steady shear may be very small is no guarantee that this variation will not 
have a measurable effect on the mean conditions. 
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